Cargando…
Deep Learning Approaches for Continuous Authentication Based on Activity Patterns Using Mobile Sensing
Smartphones as ubiquitous gadgets are rapidly becoming more intelligent and context-aware as sensing, networking, and processing capabilities advance. These devices provide users with a comprehensive platform to undertake activities such as socializing, communicating, sending and receiving e-mails,...
Autores principales: | Mekruksavanich, Sakorn, Jitpattanakul, Anuchit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625098/ https://www.ncbi.nlm.nih.gov/pubmed/34833591 http://dx.doi.org/10.3390/s21227519 |
Ejemplares similares
-
Deep Residual Network for Smartwatch-Based User Identification through Complex Hand Movements
por: Mekruksavanich, Sakorn, et al.
Publicado: (2022) -
LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes
por: Mekruksavanich, Sakorn, et al.
Publicado: (2021) -
Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
por: Mekruksavanich, Sakorn, et al.
Publicado: (2023) -
Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing
por: Ehatisham-ul-Haq, Muhammad, et al.
Publicado: (2017) -
ACF: An Armed CCTV Footage Dataset for Enhancing Weapon Detection
por: Hnoohom, Narit, et al.
Publicado: (2022)