Cargando…

A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder

Autoencoders are commonly used in representation learning. They consist of an encoder and a decoder, which provide a straightforward method to map n-dimensional data in input space to a lower m-dimensional representation space and back. The decoder itself defines an m-dimensional manifold in input s...

Descripción completa

Detalles Bibliográficos
Autores principales: Schuster, Viktoria, Krogh, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625121/
https://www.ncbi.nlm.nih.gov/pubmed/34828101
http://dx.doi.org/10.3390/e23111403