Cargando…
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
Autoencoders are commonly used in representation learning. They consist of an encoder and a decoder, which provide a straightforward method to map n-dimensional data in input space to a lower m-dimensional representation space and back. The decoder itself defines an m-dimensional manifold in input s...
Autores principales: | Schuster, Viktoria, Krogh, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625121/ https://www.ncbi.nlm.nih.gov/pubmed/34828101 http://dx.doi.org/10.3390/e23111403 |
Ejemplares similares
-
The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data
por: Schuster, Viktoria, et al.
Publicado: (2023) -
Learning Representations Using RNN Encoder-Decoder for Edge Security Control
por: Guo, Wei, et al.
Publicado: (2022) -
Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation
por: Wei, Chao, et al.
Publicado: (2016) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020)