Cargando…

Differential Response of Leafminer Flies Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) to Rapid Cold Hardening

SIMPLE SUMMARY: Liriomyza trifolii (Burgess) and L. sativae (Blanchard) are closely-related, polyphagous leafminers that occur worldwide and presumably compete with each other. In this study, we evaluated the response of pupae and adults from both species to acute (2 h) cold exposures. The results w...

Descripción completa

Detalles Bibliográficos
Autores principales: Iqbal, Junaid, Zhang, Xiao-Xiang, Chang, Ya-Wen, Du, Yu-Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625278/
https://www.ncbi.nlm.nih.gov/pubmed/34821841
http://dx.doi.org/10.3390/insects12111041
Descripción
Sumario:SIMPLE SUMMARY: Liriomyza trifolii (Burgess) and L. sativae (Blanchard) are closely-related, polyphagous leafminers that occur worldwide and presumably compete with each other. In this study, we evaluated the response of pupae and adults from both species to acute (2 h) cold exposures. The results were used to identify the lethal temperature for 80% of the population (LT80) for each species. In a separate set of experiments, insects were cooled to one of six nonlethal temperatures (0–5 °C) for 4 h and then cooled to the LT80 for 2 h to evaluate their rapid cold hardening (RCH) response. L. trifolii exhibited stronger cold tolerance than L. sativae; furthermore, the supercooling point of L. trifolii was significantly lower than that of L. sativae. RCH was induced in pupae of both species at a range of low temperatures (0–5 °C), and L. sativae pupae showed a more robust RCH response (e.g., lower supercooling pointand more durable RCH) than L. trifolii pupae. Our results indicate that subtle differences in RCH and basal cold tolerance impact the competitiveness of the two leafminers. ABSTRACT: Rapid cold hardening (RCH) is a rapid and critical adaption of insects to sudden temperature changes but is often overlooked or underestimated as a component of survival. Thus, interspecific comparisons of RCH are needed to predict how phenotypes will adapt to temperature variability. RCH not only enhances cold survival but also protects against non-lethal cold injury by preserving essential functions such as locomotion, reproduction, and energy balance. This study investigated the difference in basal cold tolerance and RCH capacity of L. trifolii and L. sativae. In both species, the cold tolerance of pupae was significantly enhanced after short-term exposure to moderately cold temperatures. The effect of RCH last for 4 h in L. sativae but only 2 h in L. trifolii. Interestingly, L. trifolii adults had a RCH response but L. sativae adults failed to acclimate. Short-term acclimation also lowered the supercooling point significantly in the pupae of both species. Based on these results, we propose a hypothesis that these differences will eventually affect their competition in the context of climate change. This study also provides the basis for future metabolomic and transcriptomic studies that may ultimately uncover the underlying mechanisms of RCH and interspecific competition between L. trifolii and L. sativae.