Cargando…
Fault Diagnosis of Permanent Magnet DC Motors Based on Multi-Segment Feature Extraction
For permanent magnet DC motors (PMDCMs), the amplitude of the current signals gradually decreases after the motor starts. Only using the signal features of current in a single segment is not conducive to fault diagnosis for PMDCMs. In this work, multi-segment feature extraction is presented for impr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625363/ https://www.ncbi.nlm.nih.gov/pubmed/34833579 http://dx.doi.org/10.3390/s21227505 |
Sumario: | For permanent magnet DC motors (PMDCMs), the amplitude of the current signals gradually decreases after the motor starts. Only using the signal features of current in a single segment is not conducive to fault diagnosis for PMDCMs. In this work, multi-segment feature extraction is presented for improving the effect of fault diagnosis of PMDCMs. Additionally, a support vector machine (SVM), a classification and regression tree (CART), and the k-nearest neighbor algorithm (k-NN) are utilized for the construction of fault diagnosis models. The time domain features extracted from several successive segments of current signals make up a feature vector, which is adopted for fault diagnosis of PMDCMs. Experimental results show that multi-segment features have a better diagnostic effect than single-segment features; the average accuracy of fault diagnosis improves by 19.88%. This paper lays the foundation of fault diagnosis for PMDCMs through multi-segment feature extraction and provides a novel method for feature extraction. |
---|