Cargando…
Fault Diagnosis of Permanent Magnet DC Motors Based on Multi-Segment Feature Extraction
For permanent magnet DC motors (PMDCMs), the amplitude of the current signals gradually decreases after the motor starts. Only using the signal features of current in a single segment is not conducive to fault diagnosis for PMDCMs. In this work, multi-segment feature extraction is presented for impr...
Autores principales: | Lu, Lixin, Wang, Weihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625363/ https://www.ncbi.nlm.nih.gov/pubmed/34833579 http://dx.doi.org/10.3390/s21227505 |
Ejemplares similares
-
A Novel Supervised Filter Feature Selection Method Based on Gaussian Probability Density for Fault Diagnosis of Permanent Magnet DC Motors
por: Wang, Weihao, et al.
Publicado: (2022) -
Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning
por: Wang, Chiao-Sheng, et al.
Publicado: (2021) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault
por: Shi, Cenwei, et al.
Publicado: (2022) -
Fault-Diagnosis and Fault-Recovery System of Hall Sensors in Brushless DC Motor Based on Neural Networks †
por: Chu, Kenny Sau Kang, et al.
Publicado: (2023)