Cargando…

Multi-Omics Interpretation of Anti-Aging Mechanisms for ω-3 Fatty Acids

Aging is one of the hottest topics in biomedicine. Previous research suggested that ω-3 fatty acids have preventive effects on aging. However, most of previous studies on the anti-aging effects of ω-3 fatty acids are focused on clinical observations, and the anti-aging mechanisms of ω-3 fatty acids...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Shu-Hui, Li, Hui, Jiang, Jing-Jing, Quan, Yuan, Zhang, Hong-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625527/
https://www.ncbi.nlm.nih.gov/pubmed/34828297
http://dx.doi.org/10.3390/genes12111691
Descripción
Sumario:Aging is one of the hottest topics in biomedicine. Previous research suggested that ω-3 fatty acids have preventive effects on aging. However, most of previous studies on the anti-aging effects of ω-3 fatty acids are focused on clinical observations, and the anti-aging mechanisms of ω-3 fatty acids have not been fully elucidated. This stimulated our interest to use multi-omics data related to ω-3 fatty acids in order to interpret the anti-aging mechanisms of ω-3 fatty acids. First, we found that ω-3 fatty acids can affect methylation levels and expression levels of genes associated with age-related diseases or pathways in humans. Then, a Mendelian randomization analysis was conducted to determine whether there is a causal relationship between the effect of ω-3 fatty acids on blood lipid levels and variation in the gut microbiome. Our results indicate that the impact of ω-3 fatty acids on aging is partially mediated by the gut microbiome (including Actinobacteria, Bifidobacteria and Streptococcus). In conclusion, this study provides deeper insights into the anti-aging mechanisms of ω-3 fatty acids and supports the dietary supplementation of ω-3 fatty acids in aging prevention.