Cargando…
An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning
A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion game...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625563/ https://www.ncbi.nlm.nih.gov/pubmed/34828131 http://dx.doi.org/10.3390/e23111433 |
_version_ | 1784606452107706368 |
---|---|
author | Wan, Kaifang Wu, Dingwei Zhai, Yiwei Li, Bo Gao, Xiaoguang Hu, Zijian |
author_facet | Wan, Kaifang Wu, Dingwei Zhai, Yiwei Li, Bo Gao, Xiaoguang Hu, Zijian |
author_sort | Wan, Kaifang |
collection | PubMed |
description | A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion games. A control-oriented framework developed from the DRL-based multi-agent deep deterministic policy gradient (MADDPG) algorithm was built to implement multi-agent cooperative decision-making to overcome the limitation of the tedious state variables required for the traditionally complicated modeling process. To address the effects of errors between a model and a real scenario, this paper introduces adversarial disturbances. It also proposes a novel adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) algorithm. By introducing an adversarial attack trick for the agents themselves, uncertainties of the real world are modeled, thereby optimizing robust training. During the training process, adversarial learning was incorporated into our algorithm to preprocess the actions of multiple agents, which enabled them to properly respond to uncertain dynamic changes in MASs. Experimental results verified that the proposed approach provides superior performance and effectiveness for pursuers and evaders, and both can learn the corresponding confrontational strategy during training. |
format | Online Article Text |
id | pubmed-8625563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86255632021-11-27 An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning Wan, Kaifang Wu, Dingwei Zhai, Yiwei Li, Bo Gao, Xiaoguang Hu, Zijian Entropy (Basel) Article A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion games. A control-oriented framework developed from the DRL-based multi-agent deep deterministic policy gradient (MADDPG) algorithm was built to implement multi-agent cooperative decision-making to overcome the limitation of the tedious state variables required for the traditionally complicated modeling process. To address the effects of errors between a model and a real scenario, this paper introduces adversarial disturbances. It also proposes a novel adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) algorithm. By introducing an adversarial attack trick for the agents themselves, uncertainties of the real world are modeled, thereby optimizing robust training. During the training process, adversarial learning was incorporated into our algorithm to preprocess the actions of multiple agents, which enabled them to properly respond to uncertain dynamic changes in MASs. Experimental results verified that the proposed approach provides superior performance and effectiveness for pursuers and evaders, and both can learn the corresponding confrontational strategy during training. MDPI 2021-10-29 /pmc/articles/PMC8625563/ /pubmed/34828131 http://dx.doi.org/10.3390/e23111433 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wan, Kaifang Wu, Dingwei Zhai, Yiwei Li, Bo Gao, Xiaoguang Hu, Zijian An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title | An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title_full | An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title_fullStr | An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title_full_unstemmed | An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title_short | An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning |
title_sort | improved approach towards multi-agent pursuit–evasion game decision-making using deep reinforcement learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625563/ https://www.ncbi.nlm.nih.gov/pubmed/34828131 http://dx.doi.org/10.3390/e23111433 |
work_keys_str_mv | AT wankaifang animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT wudingwei animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT zhaiyiwei animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT libo animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT gaoxiaoguang animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT huzijian animprovedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT wankaifang improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT wudingwei improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT zhaiyiwei improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT libo improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT gaoxiaoguang improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning AT huzijian improvedapproachtowardsmultiagentpursuitevasiongamedecisionmakingusingdeepreinforcementlearning |