Cargando…
Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms
High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instab...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625569/ https://www.ncbi.nlm.nih.gov/pubmed/34832424 http://dx.doi.org/10.3390/ma14227027 |
_version_ | 1784606453529575424 |
---|---|
author | Kossman, Stephania Bigerelle, Maxence |
author_facet | Kossman, Stephania Bigerelle, Maxence |
author_sort | Kossman, Stephania |
collection | PubMed |
description | High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instabilities from curves exhibiting a typical loading path in large nanoindentation datasets. Classification of the curves was achieved with a deep learning model, specifically, a convolutional neural network (CNN) model implemented in Python using TensorFlow and Keras libraries. Load–displacement curves (with pop-in and without pop-in) from various materials were input to train and validate the model. The curves were converted into square matrices (50 × 50) and then used as inputs for the CNN model. The model successfully differentiated between pop-in and non-pop-in curves with approximately 93% accuracy in the training and validation datasets, indicating that the risk of overfitting the model was negligible. These results confirmed that artificial intelligence and computer vision models represent a powerful tool for analyzing nanoindentation data. |
format | Online Article Text |
id | pubmed-8625569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86255692021-11-27 Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms Kossman, Stephania Bigerelle, Maxence Materials (Basel) Article High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instabilities from curves exhibiting a typical loading path in large nanoindentation datasets. Classification of the curves was achieved with a deep learning model, specifically, a convolutional neural network (CNN) model implemented in Python using TensorFlow and Keras libraries. Load–displacement curves (with pop-in and without pop-in) from various materials were input to train and validate the model. The curves were converted into square matrices (50 × 50) and then used as inputs for the CNN model. The model successfully differentiated between pop-in and non-pop-in curves with approximately 93% accuracy in the training and validation datasets, indicating that the risk of overfitting the model was negligible. These results confirmed that artificial intelligence and computer vision models represent a powerful tool for analyzing nanoindentation data. MDPI 2021-11-19 /pmc/articles/PMC8625569/ /pubmed/34832424 http://dx.doi.org/10.3390/ma14227027 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kossman, Stephania Bigerelle, Maxence Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title | Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title_full | Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title_fullStr | Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title_full_unstemmed | Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title_short | Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms |
title_sort | pop-in identification in nanoindentation curves with deep learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625569/ https://www.ncbi.nlm.nih.gov/pubmed/34832424 http://dx.doi.org/10.3390/ma14227027 |
work_keys_str_mv | AT kossmanstephania popinidentificationinnanoindentationcurveswithdeeplearningalgorithms AT bigerellemaxence popinidentificationinnanoindentationcurveswithdeeplearningalgorithms |