Cargando…
Brain Strategy Algorithm for Multiple Object Tracking Based on Merging Semantic Attributes and Appearance Features
The human brain can effortlessly perform vision processes using the visual system, which helps solve multi-object tracking (MOT) problems. However, few algorithms simulate human strategies for solving MOT. Therefore, devising a method that simulates human activity in vision has become a good choice...
Autores principales: | Diab, Mai S., Elhosseini, Mostafa A., El-Sayed, Mohamed S., Ali, Hesham A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625767/ https://www.ncbi.nlm.nih.gov/pubmed/34833680 http://dx.doi.org/10.3390/s21227604 |
Ejemplares similares
-
SNS-CF: Siamese Network with Spatially Semantic Correlation Features for Object Tracking
por: Ntwari, Thierry, et al.
Publicado: (2020) -
Track element merging strategy and vertex fitting in complex modular detectors
por: Billoir, P, et al.
Publicado: (1985) -
Can Attention Be Confined to Just Part of a Moving Object? Revisiting Target-Distractor Merging in Multiple Object Tracking
por: Howe, Piers D., et al.
Publicado: (2012) -
SAFS: Object Tracking Algorithm Based on Self-Adaptive Feature Selection
por: Guo, Wenhua, et al.
Publicado: (2021) -
Multilayer Semantic Features Adaptive Distillation for Object Detectors
por: Zhang, Zhenchang, et al.
Publicado: (2023)