Cargando…
An Efficient Content Store-Based Forwarding Scheme for Internet of Things †
One of the main advantages of information-centric networking (ICN) is that a requested piece of content can be retrieved from a content store (CS) at any intermediate node, instead of its original content producer. In existing ICN designs, nodes forward Interest packets mainly based on forwarding in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625786/ https://www.ncbi.nlm.nih.gov/pubmed/34833683 http://dx.doi.org/10.3390/s21227607 |
Sumario: | One of the main advantages of information-centric networking (ICN) is that a requested piece of content can be retrieved from a content store (CS) at any intermediate node, instead of its original content producer. In existing ICN designs, nodes forward Interest packets mainly based on forwarding information base (FIB). FIB is constructed from name prefixes registered by content producers with a list of next hops to the name prefixes. The ICN forwarding engine uses those information to forward Interest packets towards corresponding content producers. CS information of a node is currently used only for checking the availability of cached content objects at the node and is not considered in the data plane of existing ICN forwarding mechanisms. This paper highlights the importance of CS information in an ICN forwarding mechanism and enables neighbor CS information in the data plane to improve the cache hit ratio and forwarding efficiency, especially for resource-constraint Internet of Things (IoT). We propose an efficient CS-based forwarding scheme for IoT. The proposed forwarding scheme exploits CS information of neighbors to find efficient routes to forward Interest packets toward nearby nodes with corresponding cached content. For that, we carefully design an efficient way for CS information sharing using counting bloom filter. We implement the proposed scheme and compare with state-of-the-art ICN forwarding schemes in IoT. Experimental results indicate that the proposed forwarding scheme achieves a significant improvement in terms of cache hit ratio, energy efficiency, content retrieval latency, and response rate. |
---|