Cargando…
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmenta...
Autores principales: | Kalantar, Reza, Lin, Gigin, Winfield, Jessica M., Messiou, Christina, Lalondrelle, Susan, Blackledge, Matthew D., Koh, Dow-Mu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625809/ https://www.ncbi.nlm.nih.gov/pubmed/34829310 http://dx.doi.org/10.3390/diagnostics11111964 |
Ejemplares similares
-
Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging
por: Kalantar, Reza, et al.
Publicado: (2023) -
CT-Based Pelvic T(1)-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN)
por: Kalantar, Reza, et al.
Publicado: (2021) -
Supervised Machine-Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma
por: Blackledge, Matthew D., et al.
Publicado: (2019) -
Optimisation of b-values for the accurate estimation of the apparent diffusion coefficient (ADC) in whole-body diffusion-weighted MRI in patients with metastatic melanoma
por: Knill, Annemarie K., et al.
Publicado: (2022) -
Improving real‐world myeloma patient access to whole body MRI through “open‐access” knowledge sharing: The UK experience
por: Kaiser, Martin F, et al.
Publicado: (2020)