Cargando…
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625824/ https://www.ncbi.nlm.nih.gov/pubmed/34830419 http://dx.doi.org/10.3390/ijms222212537 |
_version_ | 1784606516229177344 |
---|---|
author | Pechlivani, Nikoletta Kearney, Katherine J. Ajjan, Ramzi A. |
author_facet | Pechlivani, Nikoletta Kearney, Katherine J. Ajjan, Ramzi A. |
author_sort | Pechlivani, Nikoletta |
collection | PubMed |
description | Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed. |
format | Online Article Text |
id | pubmed-8625824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86258242021-11-27 Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics Pechlivani, Nikoletta Kearney, Katherine J. Ajjan, Ramzi A. Int J Mol Sci Review Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed. MDPI 2021-11-21 /pmc/articles/PMC8625824/ /pubmed/34830419 http://dx.doi.org/10.3390/ijms222212537 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pechlivani, Nikoletta Kearney, Katherine J. Ajjan, Ramzi A. Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title | Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title_full | Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title_fullStr | Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title_full_unstemmed | Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title_short | Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics |
title_sort | fibrinogen and antifibrinolytic proteins: interactions and future therapeutics |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625824/ https://www.ncbi.nlm.nih.gov/pubmed/34830419 http://dx.doi.org/10.3390/ijms222212537 |
work_keys_str_mv | AT pechlivaninikoletta fibrinogenandantifibrinolyticproteinsinteractionsandfuturetherapeutics AT kearneykatherinej fibrinogenandantifibrinolyticproteinsinteractionsandfuturetherapeutics AT ajjanramzia fibrinogenandantifibrinolyticproteinsinteractionsandfuturetherapeutics |