Cargando…

Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment

The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Yi, Wang, Shiyuan, Ma, Hang, Ma, Binyu, Guo, Zhansheng, You, Hong, Mei, Junxue, Hou, Xuguang, Liang, Zhenlin, Li, Zhipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625849/
https://www.ncbi.nlm.nih.gov/pubmed/34832103
http://dx.doi.org/10.3390/membranes11110874
_version_ 1784606522317209600
author Ding, Yi
Wang, Shiyuan
Ma, Hang
Ma, Binyu
Guo, Zhansheng
You, Hong
Mei, Junxue
Hou, Xuguang
Liang, Zhenlin
Li, Zhipeng
author_facet Ding, Yi
Wang, Shiyuan
Ma, Hang
Ma, Binyu
Guo, Zhansheng
You, Hong
Mei, Junxue
Hou, Xuguang
Liang, Zhenlin
Li, Zhipeng
author_sort Ding, Yi
collection PubMed
description The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.
format Online
Article
Text
id pubmed-8625849
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86258492021-11-27 Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment Ding, Yi Wang, Shiyuan Ma, Hang Ma, Binyu Guo, Zhansheng You, Hong Mei, Junxue Hou, Xuguang Liang, Zhenlin Li, Zhipeng Membranes (Basel) Article The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment. MDPI 2021-11-14 /pmc/articles/PMC8625849/ /pubmed/34832103 http://dx.doi.org/10.3390/membranes11110874 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ding, Yi
Wang, Shiyuan
Ma, Hang
Ma, Binyu
Guo, Zhansheng
You, Hong
Mei, Junxue
Hou, Xuguang
Liang, Zhenlin
Li, Zhipeng
Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title_full Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title_fullStr Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title_full_unstemmed Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title_short Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment
title_sort effect of different influent conditions on biomass production and nutrient removal by aeration microalgae membrane bioreactor (icfb-mmbr) system for mariculture wastewater treatment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625849/
https://www.ncbi.nlm.nih.gov/pubmed/34832103
http://dx.doi.org/10.3390/membranes11110874
work_keys_str_mv AT dingyi effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT wangshiyuan effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT mahang effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT mabinyu effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT guozhansheng effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT youhong effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT meijunxue effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT houxuguang effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT liangzhenlin effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment
AT lizhipeng effectofdifferentinfluentconditionsonbiomassproductionandnutrientremovalbyaerationmicroalgaemembranebioreactoricfbmmbrsystemformariculturewastewatertreatment