Cargando…
Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques
Background and Objectives: Determining the presence or absence of cochlear dead regions (DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model that applies oversampling techniques for predicting DRs in patients. Materials and Methods: We used recursive parti...
Autores principales: | Chang, Young-Soo, Park, Hee-Sung, Moon, Il-Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625869/ https://www.ncbi.nlm.nih.gov/pubmed/34833410 http://dx.doi.org/10.3390/medicina57111192 |
Ejemplares similares
-
Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study
por: Chang, Young-Soo, et al.
Publicado: (2019) -
Objective Test of Cochlear Dead Region: Electrophysiologic Approach using Acoustic Change Complex
por: Kang, Soojin, et al.
Publicado: (2018) -
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022) -
Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning
por: Mayo, Michael, et al.
Publicado: (2019) -
On the Performance of Oversampling Techniques for Class Imbalance Problems
por: Kong, Jiawen, et al.
Publicado: (2020)