Cargando…

Analysis of Electromagnetic Information Leakage Based on Cryptographic Integrated Circuits

Cryptographic algorithm is the most commonly used method of information security protection for many devices. The secret key of cryptographic algorithm is usually stored in these devices’ registers. In this paper, we propose an electromagnetic information leakage model to investigate the relationshi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Shaofei, Zhang, Hongxin, Cui, Xiaotong, Li, Qiang, Dong, Liang, Fang, Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625981/
https://www.ncbi.nlm.nih.gov/pubmed/34828206
http://dx.doi.org/10.3390/e23111508
Descripción
Sumario:Cryptographic algorithm is the most commonly used method of information security protection for many devices. The secret key of cryptographic algorithm is usually stored in these devices’ registers. In this paper, we propose an electromagnetic information leakage model to investigate the relationship between the electromagnetic leakage signal and the secret key. The registers are considered as electric dipole models to illustrate the source of the electromagnetic leakage. The equivalent circuit of the magnetic field probe is developed to bridge the output voltage and the electromagnetic leakage signal. Combining them, the electromagnetic information leakage model’s function relationship can be established. Besides, an electromagnetic leakage model based on multiple linear regression is proposed to recover the secret key and the model’s effectiveness is evaluated by guess entropy. Near field tests are conducted in an unshielded ordinary indoor environment to investigate the electromagnetic side-channel information leakage. The experiment result shows the correctness of the proposed electromagnetic leakage model and it can be used to recover the secret key of the cryptographic algorithm.