Cargando…
Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constituti...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625993/ https://www.ncbi.nlm.nih.gov/pubmed/34835687 http://dx.doi.org/10.3390/nano11112921 |
_version_ | 1784606557750689792 |
---|---|
author | Ernandes, Cyrine Khalil, Lama Henck, Hugo Zhao, Meng-Qiang Chaste, Julien Oehler, Fabrice Johnson, Alan T. Charlie Asensio, Maria C. Pierucci, Debora Pala, Marco Avila, José Ouerghi, Abdelkarim |
author_facet | Ernandes, Cyrine Khalil, Lama Henck, Hugo Zhao, Meng-Qiang Chaste, Julien Oehler, Fabrice Johnson, Alan T. Charlie Asensio, Maria C. Pierucci, Debora Pala, Marco Avila, José Ouerghi, Abdelkarim |
author_sort | Ernandes, Cyrine |
collection | PubMed |
description | The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the “twist angle”. By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS(2)/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS(2) and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS(2) monolayers, including the spin-orbit coupling strength. In particular, we show that the WS(2) spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials. |
format | Online Article Text |
id | pubmed-8625993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86259932021-11-27 Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer Ernandes, Cyrine Khalil, Lama Henck, Hugo Zhao, Meng-Qiang Chaste, Julien Oehler, Fabrice Johnson, Alan T. Charlie Asensio, Maria C. Pierucci, Debora Pala, Marco Avila, José Ouerghi, Abdelkarim Nanomaterials (Basel) Article The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the “twist angle”. By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS(2)/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS(2) and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS(2) monolayers, including the spin-orbit coupling strength. In particular, we show that the WS(2) spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials. MDPI 2021-10-31 /pmc/articles/PMC8625993/ /pubmed/34835687 http://dx.doi.org/10.3390/nano11112921 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ernandes, Cyrine Khalil, Lama Henck, Hugo Zhao, Meng-Qiang Chaste, Julien Oehler, Fabrice Johnson, Alan T. Charlie Asensio, Maria C. Pierucci, Debora Pala, Marco Avila, José Ouerghi, Abdelkarim Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title | Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title_full | Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title_fullStr | Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title_full_unstemmed | Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title_short | Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer |
title_sort | strain and spin-orbit coupling engineering in twisted ws(2)/graphene heterobilayer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625993/ https://www.ncbi.nlm.nih.gov/pubmed/34835687 http://dx.doi.org/10.3390/nano11112921 |
work_keys_str_mv | AT ernandescyrine strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT khalillama strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT henckhugo strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT zhaomengqiang strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT chastejulien strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT oehlerfabrice strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT johnsonalantcharlie strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT asensiomariac strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT pieruccidebora strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT palamarco strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT avilajose strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer AT ouerghiabdelkarim strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer |