Cargando…

Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer

The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constituti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ernandes, Cyrine, Khalil, Lama, Henck, Hugo, Zhao, Meng-Qiang, Chaste, Julien, Oehler, Fabrice, Johnson, Alan T. Charlie, Asensio, Maria C., Pierucci, Debora, Pala, Marco, Avila, José, Ouerghi, Abdelkarim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625993/
https://www.ncbi.nlm.nih.gov/pubmed/34835687
http://dx.doi.org/10.3390/nano11112921
_version_ 1784606557750689792
author Ernandes, Cyrine
Khalil, Lama
Henck, Hugo
Zhao, Meng-Qiang
Chaste, Julien
Oehler, Fabrice
Johnson, Alan T. Charlie
Asensio, Maria C.
Pierucci, Debora
Pala, Marco
Avila, José
Ouerghi, Abdelkarim
author_facet Ernandes, Cyrine
Khalil, Lama
Henck, Hugo
Zhao, Meng-Qiang
Chaste, Julien
Oehler, Fabrice
Johnson, Alan T. Charlie
Asensio, Maria C.
Pierucci, Debora
Pala, Marco
Avila, José
Ouerghi, Abdelkarim
author_sort Ernandes, Cyrine
collection PubMed
description The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the “twist angle”. By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS(2)/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS(2) and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS(2) monolayers, including the spin-orbit coupling strength. In particular, we show that the WS(2) spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials.
format Online
Article
Text
id pubmed-8625993
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86259932021-11-27 Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer Ernandes, Cyrine Khalil, Lama Henck, Hugo Zhao, Meng-Qiang Chaste, Julien Oehler, Fabrice Johnson, Alan T. Charlie Asensio, Maria C. Pierucci, Debora Pala, Marco Avila, José Ouerghi, Abdelkarim Nanomaterials (Basel) Article The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the “twist angle”. By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS(2)/graphene heterobilayer for various twist angles. Despite the relatively weak coupling between WS(2) and graphene, we demonstrate that the resulting strain quantitatively affects many electronic features of the WS(2) monolayers, including the spin-orbit coupling strength. In particular, we show that the WS(2) spin-orbit splitting of the valence band maximum at K can be tuned from 430 to 460 meV. Our findings open perspectives in controlling the band dispersion of van der Waals materials. MDPI 2021-10-31 /pmc/articles/PMC8625993/ /pubmed/34835687 http://dx.doi.org/10.3390/nano11112921 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ernandes, Cyrine
Khalil, Lama
Henck, Hugo
Zhao, Meng-Qiang
Chaste, Julien
Oehler, Fabrice
Johnson, Alan T. Charlie
Asensio, Maria C.
Pierucci, Debora
Pala, Marco
Avila, José
Ouerghi, Abdelkarim
Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title_full Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title_fullStr Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title_full_unstemmed Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title_short Strain and Spin-Orbit Coupling Engineering in Twisted WS(2)/Graphene Heterobilayer
title_sort strain and spin-orbit coupling engineering in twisted ws(2)/graphene heterobilayer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625993/
https://www.ncbi.nlm.nih.gov/pubmed/34835687
http://dx.doi.org/10.3390/nano11112921
work_keys_str_mv AT ernandescyrine strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT khalillama strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT henckhugo strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT zhaomengqiang strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT chastejulien strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT oehlerfabrice strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT johnsonalantcharlie strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT asensiomariac strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT pieruccidebora strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT palamarco strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT avilajose strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer
AT ouerghiabdelkarim strainandspinorbitcouplingengineeringintwistedws2grapheneheterobilayer