Cargando…
A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization
Stochastic gradient sg-based algorithms for Markov chain Monte Carlo sampling (sgmcmc) tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise on sgsteps. The sampling properties of these algorithms are determined by user choices, such as the covariance of the...
Autores principales: | Franzese, Giulio, Milios, Dimitrios, Filippone, Maurizio, Michiardi, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626050/ https://www.ncbi.nlm.nih.gov/pubmed/34828123 http://dx.doi.org/10.3390/e23111426 |
Ejemplares similares
-
On Scalable Deep Learning and Parallelizing Gradient Descent
por: Hermans, Joeri
Publicado: (2017) -
How Much Is Enough? A Study on Diffusion Times in Score-Based Generative Models
por: Franzese, Giulio, et al.
Publicado: (2023) -
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System
por: Vo, Nam D., et al.
Publicado: (2020) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023)