Cargando…
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
Traditional machine-learning methods are inefficient in capturing chaos in nonlinear dynamical systems, especially when the time difference [Formula: see text] between consecutive steps is so large that the extracted time series looks apparently random. Here, we introduce a new long-short-term-memor...
Autores principales: | Meng, Xiangyi, Yang, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626053/ https://www.ncbi.nlm.nih.gov/pubmed/34828189 http://dx.doi.org/10.3390/e23111491 |
Ejemplares similares
-
Forecasting for Chaotic Time Series Based on GRP-lstmGAN Model: Application to Temperature Series of Rotary Kiln
por: Hu, Wenyu, et al.
Publicado: (2022) -
Chaotic Entanglement: Entropy and Geometry
por: Morena, Matthew A., et al.
Publicado: (2021) -
Time series forecasting of COVID-19 transmission in Canada using LSTM networks()
por: Chimmula, Vinay Kumar Reddy, et al.
Publicado: (2020) -
Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series
por: Sagheer, Alaa, et al.
Publicado: (2021) -
An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model
por: Lv, Jiehua, et al.
Publicado: (2021)