Cargando…
Bayesian probabilistic assignment of chemical shifts in organic solids
A prerequisite for NMR studies of organic materials is assigning each experimental chemical shift to a set of geometrically equivalent nuclei. Obtaining the assignment experimentally can be challenging and typically requires time-consuming multidimensional correlation experiments. An alternative sol...
Autores principales: | Cordova, Manuel, Balodis, Martins, Simões de Almeida, Bruno, Ceriotti, Michele, Emsley, Lyndon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626066/ https://www.ncbi.nlm.nih.gov/pubmed/34826232 http://dx.doi.org/10.1126/sciadv.abk2341 |
Ejemplares similares
-
A Machine Learning Model of Chemical Shifts for Chemically
and Structurally Diverse Molecular Solids
por: Cordova, Manuel, et al.
Publicado: (2022) -
De Novo Crystal Structure Determination
from Machine Learned Chemical Shifts
por: Balodis, Martins, et al.
Publicado: (2022) -
Chemical
Shift-Dependent Interaction Maps in Molecular
Solids
por: Cordova, Manuel, et al.
Publicado: (2023) -
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Rapid Structure Determination of Molecular Solids
Using Chemical Shifts Directed by Unambiguous Prior Constraints
por: Hofstetter, Albert, et al.
Publicado: (2019)