Cargando…
A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data
Real-time continuous tracking of seizure state is necessary to develop feedback neuromodulation therapy that can prevent or terminate a seizure early. Due to its high temporal resolution, high scalp coverage, and non-invasive applicability, electroencephalography (EEG) is a good candidate for seizur...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626138/ https://www.ncbi.nlm.nih.gov/pubmed/34543199 http://dx.doi.org/10.1109/TNSRE.2021.3113888 |
_version_ | 1784606590563778560 |
---|---|
author | Steele, Alexander G. Parekh, Sankalp Azgomi, Hamid Fekri Ahmadi, Mohammad Badri Craik, Alexander Pati, Sandipan Francis, Joseph T. Contreras-Vidal, Jose L. Faghih, Rose T. |
author_facet | Steele, Alexander G. Parekh, Sankalp Azgomi, Hamid Fekri Ahmadi, Mohammad Badri Craik, Alexander Pati, Sandipan Francis, Joseph T. Contreras-Vidal, Jose L. Faghih, Rose T. |
author_sort | Steele, Alexander G. |
collection | PubMed |
description | Real-time continuous tracking of seizure state is necessary to develop feedback neuromodulation therapy that can prevent or terminate a seizure early. Due to its high temporal resolution, high scalp coverage, and non-invasive applicability, electroencephalography (EEG) is a good candidate for seizure tracking. In this research, we make multiple seizure state estimations using a mixed-filter and multiple channels found over the entire sensor space; then by applying a Kalman filter, we produce a single seizure state estimation made up of these individual estimations. Using a modified wrapper feature selection, we determine two optimal features of mixed data type, one continuous and one binary analyzing all available channels. These features are used in a state-space framework to model the continuous hidden seizure state. Expectation maximization is performed offline on the training and validation data sets to estimate unknown parameters. The seizure state estimation process is performed for multiple channels, and the seizure state estimation is derived using a square-root Kalman filter. A second expectation maximization step is utilized to estimate the unknown square-root Kalman filter parameters. This method is tested in a real-time applicable way for seizure state estimation. Applying this approach, we obtain a single seizure state estimation with quantitative information about the likelihood of a seizure occurring, which we call seizure probability. Our results on the experimental data (CHB-MIT EEG database) validate the proposed estimation method and we achieve an average accuracy, sensitivity, and specificity of 92.7%, 92.8%, and 93.4%, respectively. The potential applications of this seizure estimation model are for closed-loop neuromodulation and long-term quantitative analysis of seizure treatment efficacy. |
format | Online Article Text |
id | pubmed-8626138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-86261382021-11-26 A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data Steele, Alexander G. Parekh, Sankalp Azgomi, Hamid Fekri Ahmadi, Mohammad Badri Craik, Alexander Pati, Sandipan Francis, Joseph T. Contreras-Vidal, Jose L. Faghih, Rose T. IEEE Trans Neural Syst Rehabil Eng Article Real-time continuous tracking of seizure state is necessary to develop feedback neuromodulation therapy that can prevent or terminate a seizure early. Due to its high temporal resolution, high scalp coverage, and non-invasive applicability, electroencephalography (EEG) is a good candidate for seizure tracking. In this research, we make multiple seizure state estimations using a mixed-filter and multiple channels found over the entire sensor space; then by applying a Kalman filter, we produce a single seizure state estimation made up of these individual estimations. Using a modified wrapper feature selection, we determine two optimal features of mixed data type, one continuous and one binary analyzing all available channels. These features are used in a state-space framework to model the continuous hidden seizure state. Expectation maximization is performed offline on the training and validation data sets to estimate unknown parameters. The seizure state estimation process is performed for multiple channels, and the seizure state estimation is derived using a square-root Kalman filter. A second expectation maximization step is utilized to estimate the unknown square-root Kalman filter parameters. This method is tested in a real-time applicable way for seizure state estimation. Applying this approach, we obtain a single seizure state estimation with quantitative information about the likelihood of a seizure occurring, which we call seizure probability. Our results on the experimental data (CHB-MIT EEG database) validate the proposed estimation method and we achieve an average accuracy, sensitivity, and specificity of 92.7%, 92.8%, and 93.4%, respectively. The potential applications of this seizure estimation model are for closed-loop neuromodulation and long-term quantitative analysis of seizure treatment efficacy. 2021-10-08 2021 /pmc/articles/PMC8626138/ /pubmed/34543199 http://dx.doi.org/10.1109/TNSRE.2021.3113888 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Steele, Alexander G. Parekh, Sankalp Azgomi, Hamid Fekri Ahmadi, Mohammad Badri Craik, Alexander Pati, Sandipan Francis, Joseph T. Contreras-Vidal, Jose L. Faghih, Rose T. A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title | A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title_full | A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title_fullStr | A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title_full_unstemmed | A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title_short | A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data |
title_sort | mixed filtering approach for real-time seizure state tracking using multi-channel electroencephalography data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626138/ https://www.ncbi.nlm.nih.gov/pubmed/34543199 http://dx.doi.org/10.1109/TNSRE.2021.3113888 |
work_keys_str_mv | AT steelealexanderg amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT parekhsankalp amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT azgomihamidfekri amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT ahmadimohammadbadri amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT craikalexander amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT patisandipan amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT francisjosepht amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT contrerasvidaljosel amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT faghihroset amixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT steelealexanderg mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT parekhsankalp mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT azgomihamidfekri mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT ahmadimohammadbadri mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT craikalexander mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT patisandipan mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT francisjosepht mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT contrerasvidaljosel mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata AT faghihroset mixedfilteringapproachforrealtimeseizurestatetrackingusingmultichannelelectroencephalographydata |