Cargando…
A deep learning approach for predicting severity of COVID-19 patients using a parsimonious set of laboratory markers
The SARS-CoV-2 virus has caused tremendous healthcare burden worldwide. Our focus was to develop a practical and easy-to-deploy system to predict the severe manifestation of disease in patients with COVID-19 with an aim to assist clinicians in triage and treatment decisions. Our proposed predictive...
Autores principales: | Singh, Vivek, Kamaleswaran, Rishikesan, Chalfin, Donald, Buño-Soto, Antonio, San Roman, Janika, Rojas-Kenney, Edith, Molinaro, Ross, von Sengbusch, Sabine, Hodjat, Parsa, Comaniciu, Dorin, Kamen, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626152/ https://www.ncbi.nlm.nih.gov/pubmed/34870131 http://dx.doi.org/10.1016/j.isci.2021.103523 |
Ejemplares similares
-
A Review of Visual Representations of Physiologic Data
por: Kamaleswaran, Rishikesan, et al.
Publicado: (2016) -
Parsimony of Publishers
Publicado: (1852) -
The Vice of Parsimony
Publicado: (1875) -
On parsimony and clustering
por: Oggier, Frédérique, et al.
Publicado: (2023) -
Hierarchical clustering of maximum parsimony reconciliations
por: Mawhorter, Ross, et al.
Publicado: (2019)