Cargando…

Prognostic and Immunological Significance of CXCR2 in Ovarian Cancer: A Promising Target for Survival Outcome and Immunotherapeutic Response Assessment

OBJECTIVE: Uncovering genetic and immunologic tumor features is critical to gain insights into the mechanisms of immunotherapeutic response. Herein, this study observed the functions of CXCR2 in prognosis and immunology of ovarian cancer. METHODS: Expression, prognostic significance, and genetic mut...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Haizhou, Ren, Mi, Liu, Tongyu, Sun, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626184/
https://www.ncbi.nlm.nih.gov/pubmed/34840630
http://dx.doi.org/10.1155/2021/5350232
Descripción
Sumario:OBJECTIVE: Uncovering genetic and immunologic tumor features is critical to gain insights into the mechanisms of immunotherapeutic response. Herein, this study observed the functions of CXCR2 in prognosis and immunology of ovarian cancer. METHODS: Expression, prognostic significance, and genetic mutations of CXCR2 were analyzed in diverse cancer types based on TCGA and GTEx datasets. Associations of CXCR2 expression with immune checkpoints, neoantigens, tumor mutational burden (TMB), and microsatellite instability (MSI) were evaluated across pancancer. CXCR2-relevant genes were identified, and their biological functions were investigated in ovarian cancer. Through three algorithms (TIMER, quanTIseq, and xCell), we assessed the relationships of CXCR2 with immune cell infiltration in ovarian cancer. GSEA was adopted for inferring KEGG and hallmark pathways involved in CXCR2. RESULTS: CXCR2 presented abnormal expression in tumors than paired normal tissues across pancancer. Higher expression of CXCR2 was found in ovarian cancer. Moreover, its expression was in relation to overall survival and progression including ovarian cancer. Prominent associations of CXCR2 with immune checkpoints, neoantigens, TMB, and MSI were observed in human cancers. Somatic mutations of CXCR2 frequently occurred across pancancer. Amplification was the main mutational type of CXCR2 in ovarian cancer. CXCR2-relevant genes were markedly enriched in immunity activation and carcinogenic pathways in ovarian cancer. Moreover, it participated in modulating immune cell infiltration in the tumor microenvironment of ovarian cancer such as macrophage and immune response was prominently modulated by CXCR2. CONCLUSION: Collectively, CXCR2 acts as a promising prognostic and immunological biomarker as well as a novel immunotherapeutic target of ovarian cancer.