Cargando…
Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach
Novel coronavirus named SARS-CoV-2 is one of the global threads and uncertain challenges worldwide faced at present. It has stroke rapidly around the globe due to viral transmissibility, new variants (strains), and human unconsciousness. Lack of adequate and reliable vaccination and proper treatment...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626290/ https://www.ncbi.nlm.nih.gov/pubmed/34866811 http://dx.doi.org/10.1016/j.chaos.2021.111636 |
Sumario: | Novel coronavirus named SARS-CoV-2 is one of the global threads and uncertain challenges worldwide faced at present. It has stroke rapidly around the globe due to viral transmissibility, new variants (strains), and human unconsciousness. Lack of adequate and reliable vaccination and proper treatment, control measures such as self-protection, physical distancing, lockdown, quarantine, and isolation policy plays an essential role in controlling and reducing the pandemic. Decisions on enforcing various control measures should be determined based on a theoretical framework and real-data evidence. We deliberate a general mathematical control measures epidemic model consisting of lockdown, self-protection, physical distancing, quarantine, and isolation compartments. Then, we investigate the proposed model through Caputo fractional order derivative. Fixed point theory has been used to analyze the Caputo fractional-order derivative model's existence and uniqueness solutions, whereas the Adams-Bashforth-Moulton numerical scheme was applied for numerical simulation. Driven by extensive theoretical analysis and numerical simulation, this work further illuminates the substantial impact of various control measures. |
---|