Cargando…

Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach

Novel coronavirus named SARS-CoV-2 is one of the global threads and uncertain challenges worldwide faced at present. It has stroke rapidly around the globe due to viral transmissibility, new variants (strains), and human unconsciousness. Lack of adequate and reliable vaccination and proper treatment...

Descripción completa

Detalles Bibliográficos
Autores principales: Ullah, Mohammad Sharif, Higazy, M., Ariful Kabir, K.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626290/
https://www.ncbi.nlm.nih.gov/pubmed/34866811
http://dx.doi.org/10.1016/j.chaos.2021.111636
Descripción
Sumario:Novel coronavirus named SARS-CoV-2 is one of the global threads and uncertain challenges worldwide faced at present. It has stroke rapidly around the globe due to viral transmissibility, new variants (strains), and human unconsciousness. Lack of adequate and reliable vaccination and proper treatment, control measures such as self-protection, physical distancing, lockdown, quarantine, and isolation policy plays an essential role in controlling and reducing the pandemic. Decisions on enforcing various control measures should be determined based on a theoretical framework and real-data evidence. We deliberate a general mathematical control measures epidemic model consisting of lockdown, self-protection, physical distancing, quarantine, and isolation compartments. Then, we investigate the proposed model through Caputo fractional order derivative. Fixed point theory has been used to analyze the Caputo fractional-order derivative model's existence and uniqueness solutions, whereas the Adams-Bashforth-Moulton numerical scheme was applied for numerical simulation. Driven by extensive theoretical analysis and numerical simulation, this work further illuminates the substantial impact of various control measures.