Cargando…
A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography
As the prevalence of diabetes increases, millions of people need to be screened for diabetic retinopathy (DR). Remarkable advances in technology have made it possible to use artificial intelligence to screen DR from retinal images with high accuracy and reliability, resulting in reducing human labor...
Autores principales: | Ryu, Gahyung, Lee, Kyungmin, Park, Donggeun, Park, Sang Hyun, Sagong, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626435/ https://www.ncbi.nlm.nih.gov/pubmed/34837030 http://dx.doi.org/10.1038/s41598-021-02479-6 |
Ejemplares similares
-
Author Correction: A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography
por: Ryu, Gahyung, et al.
Publicado: (2022) -
A Deep Learning Algorithm for Classifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography
por: Ryu, Gahyung, et al.
Publicado: (2022) -
Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
por: Heisler, Morgan, et al.
Publicado: (2020) -
Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy
por: Chua, Jacqueline, et al.
Publicado: (2020) -
Quantification of dilated deep capillaries in diabetic retinopathy on optical coherence tomography angiography
por: Terada, Noriko, et al.
Publicado: (2023)