Cargando…
Cluster analysis and profiling of airway fluid metabolites in pediatric acute hypoxemic respiratory failure
Hierarchal clustering of amino acid metabolites may identify a metabolic signature in children with pediatric acute hypoxemic respiratory failure. Seventy-four immunocompetent children, 41 (55.4%) with pediatric acute respiratory distress syndrome (PARDS), who were between 2 days to 18 years of age...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626441/ https://www.ncbi.nlm.nih.gov/pubmed/34836982 http://dx.doi.org/10.1038/s41598-021-02354-4 |
Sumario: | Hierarchal clustering of amino acid metabolites may identify a metabolic signature in children with pediatric acute hypoxemic respiratory failure. Seventy-four immunocompetent children, 41 (55.4%) with pediatric acute respiratory distress syndrome (PARDS), who were between 2 days to 18 years of age and within 72 h of intubation for acute hypoxemic respiratory failure, were enrolled. We used hierarchal clustering and partial least squares-discriminant analysis to profile the tracheal aspirate airway fluid using quantitative LC–MS/MS to explore clusters of metabolites that correlated with acute hypoxemia severity and ventilator-free days. Three clusters of children that differed by severity of hypoxemia and ventilator-free days were identified. Quantitative pathway enrichment analysis showed that cysteine and methionine metabolism, selenocompound metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and valine, leucine, and isoleucine biosynthesis were the top five enriched, impactful pathways. We identified three clusters of amino acid metabolites found in the airway fluid of intubated children important to acute hypoxemia severity that correlated with ventilator-free days < 21 days. Further studies are needed to validate our findings and to test our models. |
---|