Cargando…
Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study
We present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery that accounts for non-linearity and interaction in large biomedical databases with minimal variable pre-processing. In this study, mortality models were built using gradient boosting decision trees...
Autores principales: | Madakkatel, Iqbal, Zhou, Ang, McDonnell, Mark D., Hyppönen, Elina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626442/ https://www.ncbi.nlm.nih.gov/pubmed/34837000 http://dx.doi.org/10.1038/s41598-021-02476-9 |
Ejemplares similares
-
3145 An Evaluation of Machine Learning and Traditional Statistical Methods for Discovery in Large-Scale Translational Data
por: Hollister, Megan C, et al.
Publicado: (2019) -
Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis
por: Sun, Ting-Hsuan, et al.
Publicado: (2023) -
Obesity and depressive symptoms in mid-life: a population-based cohort study
por: Mulugeta, Anwar, et al.
Publicado: (2018) -
Vitamin D deficiency and C-reactive protein: a bidirectional Mendelian randomization study
por: Zhou, Ang, et al.
Publicado: (2022) -
Do Chronic Low Back Pain and Chronic Widespread Pain differ in their association with Depression Symptoms in the 1958 British Cohort?
por: Dickson, Cameron, et al.
Publicado: (2022)