Cargando…
A study on the impact of the users’ characteristics on the performance of wearable fall detection systems
Wearable Fall Detection Systems (FDSs) have gained much research interest during last decade. In this regard, Machine Learning (ML) classifiers have shown great efficiency in discriminating falls and conventional movements or Activities of Daily Living (ADLs) based on the analysis of the signals cap...
Autores principales: | Santoyo-Ramón, José Antonio, Casilari-Pérez, Eduardo, Cano-García, José Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626458/ https://www.ncbi.nlm.nih.gov/pubmed/34836975 http://dx.doi.org/10.1038/s41598-021-02537-z |
Ejemplares similares
-
Analysis of Public Datasets for Wearable Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2017) -
A Study of One-Class Classification Algorithms for Wearable Fall Sensors
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
por: Casilari, Eduardo, et al.
Publicado: (2016) -
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2018) -
On the Heterogeneity of Existing Repositories of Movements Intended for the Evaluation of Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2020)