Cargando…
Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer
Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626773/ https://www.ncbi.nlm.nih.gov/pubmed/34673462 http://dx.doi.org/10.1016/j.watres.2021.117720 |
_version_ | 1784606724044357632 |
---|---|
author | Quintela-Baluja, Marcos Frigon, Dominic Abouelnaga, M. Jobling, Kelly Romalde, Jesús L. Gomez Lopez, Mariano Graham, David W. |
author_facet | Quintela-Baluja, Marcos Frigon, Dominic Abouelnaga, M. Jobling, Kelly Romalde, Jesús L. Gomez Lopez, Mariano Graham, David W. |
author_sort | Quintela-Baluja, Marcos |
collection | PubMed |
description | Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for “impacted” class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment. |
format | Online Article Text |
id | pubmed-8626773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-86267732021-12-03 Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer Quintela-Baluja, Marcos Frigon, Dominic Abouelnaga, M. Jobling, Kelly Romalde, Jesús L. Gomez Lopez, Mariano Graham, David W. Water Res Article Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for “impacted” class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment. Pergamon Press 2021-11-01 /pmc/articles/PMC8626773/ /pubmed/34673462 http://dx.doi.org/10.1016/j.watres.2021.117720 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Quintela-Baluja, Marcos Frigon, Dominic Abouelnaga, M. Jobling, Kelly Romalde, Jesús L. Gomez Lopez, Mariano Graham, David W. Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title | Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title_full | Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title_fullStr | Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title_full_unstemmed | Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title_short | Dynamics of integron structures across a wastewater network – Implications to resistance gene transfer |
title_sort | dynamics of integron structures across a wastewater network – implications to resistance gene transfer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626773/ https://www.ncbi.nlm.nih.gov/pubmed/34673462 http://dx.doi.org/10.1016/j.watres.2021.117720 |
work_keys_str_mv | AT quintelabalujamarcos dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT frigondominic dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT abouelnagam dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT joblingkelly dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT romaldejesusl dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT gomezlopezmariano dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer AT grahamdavidw dynamicsofintegronstructuresacrossawastewaternetworkimplicationstoresistancegenetransfer |