Cargando…

A day at the beach: Does visually perceived distance depend on the energetic cost of walking?

It takes less effort to walk from here to the Tiki Hut on the brick walkway than on the sandy beach. Does that influence how far away the Tiki Hut looks? The energetic cost of walking on dry sand is twice that of walking on firm ground (Lejeune et al., 1998). If perceived distance depends on the ene...

Descripción completa

Detalles Bibliográficos
Autores principales: Baxter, Brittany A., Warren, William H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626849/
https://www.ncbi.nlm.nih.gov/pubmed/34812836
http://dx.doi.org/10.1167/jov.21.12.13
Descripción
Sumario:It takes less effort to walk from here to the Tiki Hut on the brick walkway than on the sandy beach. Does that influence how far away the Tiki Hut looks? The energetic cost of walking on dry sand is twice that of walking on firm ground (Lejeune et al., 1998). If perceived distance depends on the energetic cost or anticipated effort of walking (Proffitt, 2006), then the distance of a target viewed over sand should appear much greater than one viewed over brick. If perceived distance is specified by optical information (e.g., declination angle from the horizon; Ooi et al., 2001), then the distances should appear similar. Participants (N = 13) viewed a target at a distance of 5, 7, 9, or 11 m over sand or brick and then blind-walked an equivalent distance on the same or different terrain. First, we observed no main effect of walked terrain; walked distances on sand and brick were the same (p = 0.46), indicating that locomotion was calibrated to each substrate. Second, responses were actually greater after viewing over brick than over sand (p < 0.001), opposite to the prediction of the energetic hypothesis. This unexpected overshooting can be explained by the slight incline of the brick walkway, which partially raises the visually perceived eye level (VPEL) and increases the target distance specified by the declination angle. The result is thus consistent with the information hypothesis. We conclude that visually perceived egocentric distance depends on optical information and not on the anticipated energetic cost of walking.