Cargando…
Gloss perception: Searching for a deep neural network that behaves like humans
The visual computations underlying human gloss perception remain poorly understood, and to date there is no image-computable model that reproduces human gloss judgments independent of shape and viewing conditions. Such a model could provide a powerful platform for testing hypotheses about the detail...
Autores principales: | Prokott, Konrad Eugen, Tamura, Hideki, Fleming, Roland W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626854/ https://www.ncbi.nlm.nih.gov/pubmed/34817568 http://dx.doi.org/10.1167/jov.21.12.14 |
Ejemplares similares
-
Distinguishing mirror from glass: A “big data” approach to material perception
por: Tamura, Hideki, et al.
Publicado: (2022) -
Unsupervised learning predicts human perception and misperception of gloss
por: Storrs, Katherine R., et al.
Publicado: (2021) -
Identifying specular highlights: Insights from deep learning
por: Prokott, Eugen, et al.
Publicado: (2022) -
‘Proto-rivalry’: how the binocular brain identifies gloss
por: Muryy, Alexander A., et al.
Publicado: (2016) -
Differential processing of binocular and monocular gloss cues in human visual cortex
por: Sun, Hua-Chun, et al.
Publicado: (2016)