Cargando…
Influence of Anterior-Posterior External Surface Perturbation on Trunk Stability During Abdominal Stabilization Strategies While Sitting
BACKGROUND: Spinal and pelvic injuries during an unexpected perturbation are closely related to spinal stability, which is known to be controlled by abdominal stabilization maneuvers. This study aimed to evaluate the effects of unexpected perturbations on trunk stability and abdominal stabilization...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626986/ https://www.ncbi.nlm.nih.gov/pubmed/34811344 http://dx.doi.org/10.12659/MSM.934022 |
Sumario: | BACKGROUND: Spinal and pelvic injuries during an unexpected perturbation are closely related to spinal stability, which is known to be controlled by abdominal stabilization maneuvers. This study aimed to evaluate the effects of unexpected perturbations on trunk stability and abdominal stabilization strategies in 42 sedentary adults while sitting. MATERIAL/METHODS: Abdominal stabilization strategies consisted of bracing and hollowing maneuvers. Abdominal bracing maneuvers (ABM) were focused on the abdominal wall muscles [inferior oblique (IO), exterior oblique (EO)], and abdominal hollowing maneuvers (AHM) were focused on deep muscle (TrA) activation. The subjects were instructed in abdominal stabilization maneuvers. Afterward, subjects were seated in a chair that could be moved forward or backward suddenly with the support surface. RESULTS: Angular displacements of the upper thorax, lower thorax, and lumbopelvic during unexpected perturbation, with different abdominal stabilization maneuvers, were measured. During forward perturbation (d=0.71, F=10.324, P=0.001) and backward perturbation in high speed (d=0.62, F=9.265, P=0.011), there were significant differences in angular displacements of the upper thorax between hollowing and bracing maneuvers. Additionally, significant differences were found in the lumbopelvic angular displacement between the hollowing and bracing maneuvers (d=0.62, F=4.071, P=0.044). CONCLUSIONS: Our findings indicate that the ABM is a better stabilizing technique for the upper thorax, and the AHM is a better stabilizing technique for the lumbopelvic region during unexpected perturbations at high speed in the seated position. |
---|