Cargando…
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
BACKGROUND: With the rapid development of various advanced biotechnologies, researchers in related fields have realized that microRNAs (miRNAs) play critical roles in many serious human diseases. However, experimental identification of new miRNA–disease associations (MDAs) is expensive and time-cons...
Autores principales: | Zhou, Feng, Yin, Meng-Meng, Jiao, Cui-Na, Cui, Zhen, Zhao, Jing-Xiu, Liu, Jin-Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627000/ https://www.ncbi.nlm.nih.gov/pubmed/34837953 http://dx.doi.org/10.1186/s12859-021-04486-w |
Ejemplares similares
-
MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations
por: Wu, Tian-Ru, et al.
Publicado: (2020) -
NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations
por: Gao, Ying-Lian, et al.
Publicado: (2019) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Drug-target interaction prediction using semi-bipartite graph model and deep learning
por: Eslami Manoochehri, Hafez, et al.
Publicado: (2020) -
RCMF: a robust collaborative matrix factorization method to predict miRNA-disease associations
por: Cui, Zhen, et al.
Publicado: (2019)