Cargando…
NFAD: fixing anomaly detection using normalizing flows
Anomaly detection is a challenging task that frequently arises in practically all areas of industry and science, from fraud detection and data quality monitoring to finding rare cases of diseases and searching for new physics. Most of the conventional approaches to anomaly detection, such as one-cla...
Autores principales: | Ryzhikov, Artem, Borisyak, Maxim, Ustyuzhanin, Andrey, Derkach, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627226/ https://www.ncbi.nlm.nih.gov/pubmed/34901422 http://dx.doi.org/10.7717/peerj-cs.757 |
Ejemplares similares
-
Symbolic expression generation via variational auto-encoder
por: Popov, Sergei, et al.
Publicado: (2023) -
Anomaly detection for blueberry data using sparse autoencoder-support vector machine
por: Wei, Dianwen, et al.
Publicado: (2023) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
Feature relevance XAI in anomaly detection: Reviewing approaches and challenges
por: Tritscher, Julian, et al.
Publicado: (2023) -
Efficient anomaly recognition using surveillance videos
por: Saleem, Gulshan, et al.
Publicado: (2022)