Cargando…
Gutter oil detection for food safety based on multi-feature machine learning and implementation on FPGA with approximate multipliers
Since consuming gutter oil does great harm to people’s health, the Food Safety Administration has always been seeking for a more effective and timely supervision. As laboratory tests consume much time, and existing field tests have excessive limitations, a more comprehensive method is in great need....
Autores principales: | Jiang, Wei, Ma, Yuhanxiao, Chen, Ruiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627233/ https://www.ncbi.nlm.nih.gov/pubmed/34901430 http://dx.doi.org/10.7717/peerj-cs.774 |
Ejemplares similares
-
A game-theoretic model for the classification of selected oil companies’ price changes
por: Lung, Rodica-Ioana, et al.
Publicado: (2023) -
Advanced feature selection to study the internationalization strategy of enterprises
por: Herrero, Álvaro, et al.
Publicado: (2021) -
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022) -
Assessing English language sentences readability using machine learning models
por: Maqsood, Shazia, et al.
Publicado: (2022) -
Provenance-and machine learning-based recommendation of parameter values in scientific workflows
por: Silva Junior, Daniel, et al.
Publicado: (2021)