Cargando…
Matching sensor ontologies with unsupervised neural network with competitive learning
Sensor ontologies formally model the core concepts in the sensor domain and their relationships, which facilitates the trusted communication and collaboration of Artificial Intelligence of Things (AIoT). However, due to the subjectivity of the ontology building process, sensor ontologies might be de...
Autores principales: | Xue, Xingsi, Wang, Haolin, Liu, Wenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627238/ https://www.ncbi.nlm.nih.gov/pubmed/34901425 http://dx.doi.org/10.7717/peerj-cs.763 |
Ejemplares similares
-
Matching sensor ontologies through siamese neural networks without using reference alignment
por: Xue, Xingsi, et al.
Publicado: (2021) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
Unsupervised query reduction for efficient yet effective news background linking
por: Essam, Marwa, et al.
Publicado: (2023) -
A convolutional neural networks based approach for clustering of emotional elements in art design
por: Rui, Xue
Publicado: (2023) -
Evaluation of cultivated land quality using attention mechanism-back propagation neural network
por: Liu, Yulin, et al.
Publicado: (2022)