Cargando…
Development of a dynamic interactive web tool to enhance understanding of multi-state model analyses: MSMplus
BACKGROUND: Multi-state models are used in complex disease pathways to describe a process where an individual moves from one state to the next, taking into account competing states during each transition. In a multi-state setting, there are various measures to be estimated that are of great epidemio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627614/ https://www.ncbi.nlm.nih.gov/pubmed/34837946 http://dx.doi.org/10.1186/s12874-021-01420-9 |
Sumario: | BACKGROUND: Multi-state models are used in complex disease pathways to describe a process where an individual moves from one state to the next, taking into account competing states during each transition. In a multi-state setting, there are various measures to be estimated that are of great epidemiological importance. However, increased complexity of the multi-state setting and predictions over time for individuals with different covariate patterns may lead to increased difficulty in communicating the estimated measures. The need for easy and meaningful communication of the analysis results motivated the development of a web tool to address these issues. RESULTS: MSMplus is a publicly available web tool, developed via the Shiny R package, with the aim of enhancing the understanding of multi-state model analyses results. The results from any multi-state model analysis are uploaded to the application in a pre-specified format. Through a variety of user-tailored interactive graphs, the application contributes to an improvement in communication, reporting and interpretation of multi-state analysis results as well as comparison between different approaches. The predicted measures that can be supported by MSMplus include, among others, the transition probabilities, the transition intensity rates, the length of stay in each state, the probability of ever visiting a state and user defined measures. Representation of differences, ratios and confidence intervals of the aforementioned measures are also supported. MSMplus is a useful tool that enhances communication and understanding of multi-state model analyses results. CONCLUSIONS: Further use and development of web tools should be encouraged in the future as a means to communicate scientific research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s12874-021-01420-9). |
---|