Cargando…
Non-melanoma skin cancer segmentation for histopathology dataset
Densely labelled segmentation data for digital pathology images is costly to produce but is invaluable to training effective machine learning models. We make available 290 hand-annotated histopathology tissue sections of the 3 most common skin cancers; basal cell carcinoma (BCC), squamous cell carci...
Autores principales: | Thomas, Simon M., Lefevre, James G., Baxter, Glenn, Hamilton, Nicholas A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627989/ https://www.ncbi.nlm.nih.gov/pubmed/34877372 http://dx.doi.org/10.1016/j.dib.2021.107587 |
Ejemplares similares
-
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Histopathological evaluation of non-melanoma skin cancer
por: Koyuncuer, Ali
Publicado: (2014) -
Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm
por: Mohamad Yusof, Umi Kalsom, et al.
Publicado: (2023) -
BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis
por: Aksac, Alper, et al.
Publicado: (2019) -
Histopathological whole slide image dataset for classification of treatment effectiveness to ovarian cancer
por: Wang, Ching-Wei, et al.
Publicado: (2022)