Cargando…
treekoR: identifying cellular-to-phenotype associations by elucidating hierarchical relationships in high-dimensional cytometry data
High-throughput single-cell technologies hold the promise of discovering novel cellular relationships with disease. However, analytical workflows constructed for these technologies to associate cell proportions with disease often employ unsupervised clustering techniques that overlook the valuable h...
Autores principales: | Chan, Adam, Jiang, Wei, Blyth, Emily, Yang, Jean, Patrick, Ellis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628061/ https://www.ncbi.nlm.nih.gov/pubmed/34844647 http://dx.doi.org/10.1186/s13059-021-02526-5 |
Ejemplares similares
-
TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees
por: Marcet-Houben, Marina, et al.
Publicado: (2011) -
Workflow for high-dimensional flow cytometry analysis of T cells from tumor metastases
por: Faccani, Cristina, et al.
Publicado: (2022) -
CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets
por: Nowicka, Malgorzata, et al.
Publicado: (2019) -
Functional Phenotyping of Lung Mouse CD4(+) T Cells Using Multiparametric Flow Cytometry Analysis
por: Maquet, Céline M., et al.
Publicado: (2023) -
Multidimensional profiling of drug‐treated cells by Imaging Mass Cytometry
por: Bouzekri, Alexandre, et al.
Publicado: (2019)