Cargando…
Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
Clinical data sets have very special properties and suffer from many caveats in machine learning. They typically show a high-class imbalance, have a small number of samples and a large number of parameters, and have missing values. While feature selection approaches and imputation techniques address...
Autores principales: | Beinecke, Jacqueline, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628399/ https://www.ncbi.nlm.nih.gov/pubmed/34844620 http://dx.doi.org/10.1186/s13040-021-00283-6 |
Ejemplares similares
-
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach
por: Alhudhaif, Adi
Publicado: (2021) -
DAD-Net: Classification of Alzheimer’s Disease Using ADASYN Oversampling Technique and Optimized Neural Network
por: Ahmed, Gulnaz, et al.
Publicado: (2022) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Better than expected: the influence of option expectations during decision-making
por: Rigoli, Francesco, et al.
Publicado: (2018)