Cargando…
A fully automatic artificial intelligence–based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis
OBJECTIVES: An accurate and rapid diagnosis is crucial for the appropriate treatment of pulmonary tuberculosis (TB). This study aims to develop an artificial intelligence (AI)–based fully automated CT image analysis system for detection, diagnosis, and burden quantification of pulmonary TB. METHODS:...
Autores principales: | Yan, Chenggong, Wang, Lingfeng, Lin, Jie, Xu, Jun, Zhang, Tianjing, Qi, Jin, Li, Xiangying, Ni, Wei, Wu, Guangyao, Huang, Jianbin, Xu, Yikai, Woodruff, Henry C., Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628489/ https://www.ncbi.nlm.nih.gov/pubmed/34842959 http://dx.doi.org/10.1007/s00330-021-08365-z |
Ejemplares similares
-
The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence
por: Willemink, Martin J., et al.
Publicado: (2018) -
Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis
por: Yan, Chenggong, et al.
Publicado: (2021) -
Machine learning-based combined nomogram for predicting the risk of pulmonary invasive fungal infection in severely immunocompromised patients
por: Yan, Chenggong, et al.
Publicado: (2022) -
Fully automated accurate patient positioning in computed tomography using anterior–posterior localizer images and a deep neural network: a dual-center study
por: Salimi, Yazdan, et al.
Publicado: (2023) -
Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging
por: Peng, Jie, et al.
Publicado: (2019)