Cargando…
Risk Assessment of Pulmonary Metastasis for Cervical Cancer Patients by Ensemble Learning Models: A Large Population Based Real-World Study
OBJECTIVE: Pulmonary metastasis (PM) is an independent risk factor affecting the prognosis of cervical patients, but it still lacks a prediction. This study aimed to develop machine learning-based predictive models for PM. METHODS: A total of 22,766 patients diagnosed with or without PM from the Sur...
Autores principales: | Zhu, Menglin, Wang, Bo, Wang, Tiejun, Chen, Yilin, He, Du |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628546/ https://www.ncbi.nlm.nih.gov/pubmed/34853529 http://dx.doi.org/10.2147/IJGM.S338389 |
Ejemplares similares
-
Risk Assessment of Bone Metastasis for Cervical Cancer Patients by Multiple Models: A Large Population Based Real-World Study
por: Han, Yun, et al.
Publicado: (2021) -
Grasping of Real-World Objects Is Not Biased by Ensemble Perception
por: Fan, Annabel Wing-Yan, et al.
Publicado: (2021) -
Ensemble Learning to Improve the Prediction of Fetal Macrosomia and Large-for-Gestational Age
por: Ye, Shangyuan, et al.
Publicado: (2020) -
Automated cervical cell segmentation using deep ensemble learning
por: Ji, Jie, et al.
Publicado: (2023) -
UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning
por: Tayebi, Aida, et al.
Publicado: (2022)