Cargando…
Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high vir...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628610/ https://www.ncbi.nlm.nih.gov/pubmed/34896895 http://dx.doi.org/10.1016/j.epidem.2021.100533 |
_version_ | 1784607032071946240 |
---|---|
author | Andriamandimby, Soa Fy Brook, Cara E. Razanajatovo, Norosoa Randriambolamanantsoa, Tsiry H. Rakotondramanga, Jean-Marius Rasambainarivo, Fidisoa Raharimanga, Vaomalala Razanajatovo, Iony Manitra Mangahasimbola, Reziky Razafindratsimandresy, Richter Randrianarisoa, Santatra Bernardson, Barivola Rabarison, Joelinotahiana Hasina Randrianarisoa, Mirella Nasolo, Frédéric Stanley Rabetombosoa, Roger Mario Ratsimbazafy, Anne-Marie Raharinosy, Vololoniaina Rabemananjara, Aina H. Ranaivoson, Christian H. Razafimanjato, Helisoa Randremanana, Rindra Héraud, Jean-Michel Dussart, Philippe |
author_facet | Andriamandimby, Soa Fy Brook, Cara E. Razanajatovo, Norosoa Randriambolamanantsoa, Tsiry H. Rakotondramanga, Jean-Marius Rasambainarivo, Fidisoa Raharimanga, Vaomalala Razanajatovo, Iony Manitra Mangahasimbola, Reziky Razafindratsimandresy, Richter Randrianarisoa, Santatra Bernardson, Barivola Rabarison, Joelinotahiana Hasina Randrianarisoa, Mirella Nasolo, Frédéric Stanley Rabetombosoa, Roger Mario Ratsimbazafy, Anne-Marie Raharinosy, Vololoniaina Rabemananjara, Aina H. Ranaivoson, Christian H. Razafimanjato, Helisoa Randremanana, Rindra Héraud, Jean-Michel Dussart, Philippe |
author_sort | Andriamandimby, Soa Fy |
collection | PubMed |
description | As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-C(t) value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on C(t) value, suggesting that C(t) value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level C(t) distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional C(t) distributions across three regions in Madagascar. We find that C(t)-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of C(t) values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting. |
format | Online Article Text |
id | pubmed-8628610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Authors. Published by Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86286102021-11-29 Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar Andriamandimby, Soa Fy Brook, Cara E. Razanajatovo, Norosoa Randriambolamanantsoa, Tsiry H. Rakotondramanga, Jean-Marius Rasambainarivo, Fidisoa Raharimanga, Vaomalala Razanajatovo, Iony Manitra Mangahasimbola, Reziky Razafindratsimandresy, Richter Randrianarisoa, Santatra Bernardson, Barivola Rabarison, Joelinotahiana Hasina Randrianarisoa, Mirella Nasolo, Frédéric Stanley Rabetombosoa, Roger Mario Ratsimbazafy, Anne-Marie Raharinosy, Vololoniaina Rabemananjara, Aina H. Ranaivoson, Christian H. Razafimanjato, Helisoa Randremanana, Rindra Héraud, Jean-Michel Dussart, Philippe Epidemics Article As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-C(t) value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on C(t) value, suggesting that C(t) value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level C(t) distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional C(t) distributions across three regions in Madagascar. We find that C(t)-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of C(t) values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting. The Authors. Published by Elsevier B.V. 2022-03 2021-11-29 /pmc/articles/PMC8628610/ /pubmed/34896895 http://dx.doi.org/10.1016/j.epidem.2021.100533 Text en © 2021 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Andriamandimby, Soa Fy Brook, Cara E. Razanajatovo, Norosoa Randriambolamanantsoa, Tsiry H. Rakotondramanga, Jean-Marius Rasambainarivo, Fidisoa Raharimanga, Vaomalala Razanajatovo, Iony Manitra Mangahasimbola, Reziky Razafindratsimandresy, Richter Randrianarisoa, Santatra Bernardson, Barivola Rabarison, Joelinotahiana Hasina Randrianarisoa, Mirella Nasolo, Frédéric Stanley Rabetombosoa, Roger Mario Ratsimbazafy, Anne-Marie Raharinosy, Vololoniaina Rabemananjara, Aina H. Ranaivoson, Christian H. Razafimanjato, Helisoa Randremanana, Rindra Héraud, Jean-Michel Dussart, Philippe Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title | Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title_full | Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title_fullStr | Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title_full_unstemmed | Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title_short | Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar |
title_sort | cross-sectional cycle threshold values reflect epidemic dynamics of covid-19 in madagascar |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628610/ https://www.ncbi.nlm.nih.gov/pubmed/34896895 http://dx.doi.org/10.1016/j.epidem.2021.100533 |
work_keys_str_mv | AT andriamandimbysoafy crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT brookcarae crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT razanajatovonorosoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT randriambolamanantsoatsiryh crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT rakotondramangajeanmarius crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT rasambainarivofidisoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT raharimangavaomalala crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT razanajatovoionymanitra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT mangahasimbolareziky crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT razafindratsimandresyrichter crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT randrianarisoasantatra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT bernardsonbarivola crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT rabarisonjoelinotahianahasina crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT randrianarisoamirella crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT nasolofredericstanley crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT rabetombosoarogermario crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT ratsimbazafyannemarie crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT raharinosyvololoniaina crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT rabemananjaraainah crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT ranaivosonchristianh crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT razafimanjatohelisoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT randremananarindra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT heraudjeanmichel crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar AT dussartphilippe crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar |