Cargando…

Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar

As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high vir...

Descripción completa

Detalles Bibliográficos
Autores principales: Andriamandimby, Soa Fy, Brook, Cara E., Razanajatovo, Norosoa, Randriambolamanantsoa, Tsiry H., Rakotondramanga, Jean-Marius, Rasambainarivo, Fidisoa, Raharimanga, Vaomalala, Razanajatovo, Iony Manitra, Mangahasimbola, Reziky, Razafindratsimandresy, Richter, Randrianarisoa, Santatra, Bernardson, Barivola, Rabarison, Joelinotahiana Hasina, Randrianarisoa, Mirella, Nasolo, Frédéric Stanley, Rabetombosoa, Roger Mario, Ratsimbazafy, Anne-Marie, Raharinosy, Vololoniaina, Rabemananjara, Aina H., Ranaivoson, Christian H., Razafimanjato, Helisoa, Randremanana, Rindra, Héraud, Jean-Michel, Dussart, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628610/
https://www.ncbi.nlm.nih.gov/pubmed/34896895
http://dx.doi.org/10.1016/j.epidem.2021.100533
_version_ 1784607032071946240
author Andriamandimby, Soa Fy
Brook, Cara E.
Razanajatovo, Norosoa
Randriambolamanantsoa, Tsiry H.
Rakotondramanga, Jean-Marius
Rasambainarivo, Fidisoa
Raharimanga, Vaomalala
Razanajatovo, Iony Manitra
Mangahasimbola, Reziky
Razafindratsimandresy, Richter
Randrianarisoa, Santatra
Bernardson, Barivola
Rabarison, Joelinotahiana Hasina
Randrianarisoa, Mirella
Nasolo, Frédéric Stanley
Rabetombosoa, Roger Mario
Ratsimbazafy, Anne-Marie
Raharinosy, Vololoniaina
Rabemananjara, Aina H.
Ranaivoson, Christian H.
Razafimanjato, Helisoa
Randremanana, Rindra
Héraud, Jean-Michel
Dussart, Philippe
author_facet Andriamandimby, Soa Fy
Brook, Cara E.
Razanajatovo, Norosoa
Randriambolamanantsoa, Tsiry H.
Rakotondramanga, Jean-Marius
Rasambainarivo, Fidisoa
Raharimanga, Vaomalala
Razanajatovo, Iony Manitra
Mangahasimbola, Reziky
Razafindratsimandresy, Richter
Randrianarisoa, Santatra
Bernardson, Barivola
Rabarison, Joelinotahiana Hasina
Randrianarisoa, Mirella
Nasolo, Frédéric Stanley
Rabetombosoa, Roger Mario
Ratsimbazafy, Anne-Marie
Raharinosy, Vololoniaina
Rabemananjara, Aina H.
Ranaivoson, Christian H.
Razafimanjato, Helisoa
Randremanana, Rindra
Héraud, Jean-Michel
Dussart, Philippe
author_sort Andriamandimby, Soa Fy
collection PubMed
description As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-C(t) value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on C(t) value, suggesting that C(t) value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level C(t) distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional C(t) distributions across three regions in Madagascar. We find that C(t)-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of C(t) values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting.
format Online
Article
Text
id pubmed-8628610
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Authors. Published by Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-86286102021-11-29 Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar Andriamandimby, Soa Fy Brook, Cara E. Razanajatovo, Norosoa Randriambolamanantsoa, Tsiry H. Rakotondramanga, Jean-Marius Rasambainarivo, Fidisoa Raharimanga, Vaomalala Razanajatovo, Iony Manitra Mangahasimbola, Reziky Razafindratsimandresy, Richter Randrianarisoa, Santatra Bernardson, Barivola Rabarison, Joelinotahiana Hasina Randrianarisoa, Mirella Nasolo, Frédéric Stanley Rabetombosoa, Roger Mario Ratsimbazafy, Anne-Marie Raharinosy, Vololoniaina Rabemananjara, Aina H. Ranaivoson, Christian H. Razafimanjato, Helisoa Randremanana, Rindra Héraud, Jean-Michel Dussart, Philippe Epidemics Article As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (C(t)) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-C(t) value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on C(t) value, suggesting that C(t) value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level C(t) distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional C(t) distributions across three regions in Madagascar. We find that C(t)-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of C(t) values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting. The Authors. Published by Elsevier B.V. 2022-03 2021-11-29 /pmc/articles/PMC8628610/ /pubmed/34896895 http://dx.doi.org/10.1016/j.epidem.2021.100533 Text en © 2021 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Andriamandimby, Soa Fy
Brook, Cara E.
Razanajatovo, Norosoa
Randriambolamanantsoa, Tsiry H.
Rakotondramanga, Jean-Marius
Rasambainarivo, Fidisoa
Raharimanga, Vaomalala
Razanajatovo, Iony Manitra
Mangahasimbola, Reziky
Razafindratsimandresy, Richter
Randrianarisoa, Santatra
Bernardson, Barivola
Rabarison, Joelinotahiana Hasina
Randrianarisoa, Mirella
Nasolo, Frédéric Stanley
Rabetombosoa, Roger Mario
Ratsimbazafy, Anne-Marie
Raharinosy, Vololoniaina
Rabemananjara, Aina H.
Ranaivoson, Christian H.
Razafimanjato, Helisoa
Randremanana, Rindra
Héraud, Jean-Michel
Dussart, Philippe
Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title_full Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title_fullStr Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title_full_unstemmed Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title_short Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar
title_sort cross-sectional cycle threshold values reflect epidemic dynamics of covid-19 in madagascar
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628610/
https://www.ncbi.nlm.nih.gov/pubmed/34896895
http://dx.doi.org/10.1016/j.epidem.2021.100533
work_keys_str_mv AT andriamandimbysoafy crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT brookcarae crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT razanajatovonorosoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT randriambolamanantsoatsiryh crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT rakotondramangajeanmarius crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT rasambainarivofidisoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT raharimangavaomalala crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT razanajatovoionymanitra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT mangahasimbolareziky crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT razafindratsimandresyrichter crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT randrianarisoasantatra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT bernardsonbarivola crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT rabarisonjoelinotahianahasina crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT randrianarisoamirella crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT nasolofredericstanley crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT rabetombosoarogermario crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT ratsimbazafyannemarie crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT raharinosyvololoniaina crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT rabemananjaraainah crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT ranaivosonchristianh crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT razafimanjatohelisoa crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT randremananarindra crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT heraudjeanmichel crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar
AT dussartphilippe crosssectionalcyclethresholdvaluesreflectepidemicdynamicsofcovid19inmadagascar