Cargando…
Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade
Background: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for gr...
Autores principales: | Lagree, Andrew, Shiner, Audrey, Alera, Marie Angeli, Fleshner, Lauren, Law, Ethan, Law, Brianna, Lu, Fang-I, Dodington, David, Gandhi, Sonal, Slodkowska, Elzbieta A., Shenfield, Alex, Jerzak, Katarzyna J., Sadeghi-Naini, Ali, Tran, William T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628688/ https://www.ncbi.nlm.nih.gov/pubmed/34898544 http://dx.doi.org/10.3390/curroncol28060366 |
Ejemplares similares
-
Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies
por: Saednia, Khadijeh, et al.
Publicado: (2022) -
Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning
por: Shiner, Audrey, et al.
Publicado: (2023) -
A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
por: Lagree, Andrew, et al.
Publicado: (2021) -
Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features
por: Sannachi, Lakshmanan, et al.
Publicado: (2018) -
Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities
por: Sadeghi-Naini, Ali, et al.
Publicado: (2017)