Cargando…
Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation
Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628781/ https://www.ncbi.nlm.nih.gov/pubmed/34842698 http://dx.doi.org/10.3390/gels7040213 |
_version_ | 1784607069672833024 |
---|---|
author | Algahtani, Mohammed S. Ahmad, Mohammad Zaki Nourein, Ihab Hamed Albarqi, Hassan A. Alyami, Hamad S. Alyami, Mohammad H. Alqahtani, Abdulsalam A. Alasiri, Ali Algahtani, Thamer S. Mohammed, Abdul Aleem Ahmad, Javed |
author_facet | Algahtani, Mohammed S. Ahmad, Mohammad Zaki Nourein, Ihab Hamed Albarqi, Hassan A. Alyami, Hamad S. Alyami, Mohammad H. Alqahtani, Abdulsalam A. Alasiri, Ali Algahtani, Thamer S. Mohammed, Abdul Aleem Ahmad, Javed |
author_sort | Algahtani, Mohammed S. |
collection | PubMed |
description | Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wound healing application. Further, curcumin (a natural bioactive) was selected as a therapeutic agent to incorporate into the hydrogel system to design and develop nanogel pharmaceutical products for wound healing. Although, curcumin possesses remarkable anti-inflammatory, antioxidant, and anti-infective activity along with hastening the healing process by acting over the different stages of the wound healing process, but its poor biopharmaceutical (low aqueous solubility and skin penetrability) attributes hamper their therapeutic efficacy for skin applications. The current investigation aimed to develop the curcumin-loaded nanogel system and evaluated to check the improvement in the therapeutic efficacy of curcumin through a nanomedicine-based approach for wound healing activity in Wistar rats. The curcumin was enclosed inside the nanoemulsion system prepared through a high-energy ultrasonic emulsification technique at a minimum concentration of surfactant required to nanoemulsify the curcumin-loaded oil system (Labrafac PG) having droplet size 56.25 ± 0.69 nm with polydispersity index 0.05 ± 0.01 and negatively surface charge with zeta potential −20.26 ± 0.65 mV. It was observed that the impact of Smix (surfactant/co-surfactant mixture) ratio on droplet size of generated nanoemulsion is more pronounced at lower Smix concentration (25%) compared to the higher Smix concentration (30%). The optimized curcumin-loaded nanoemulsion was incorporated into a 0.5% Carbopol(®) 940 hydrogel system for topical application. The developed curcumin nanoemulgel exhibited thixotropic rheological behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared to curcumin dispersed in conventional hydrogel system. The in vivo wound healing efficacy study and histological examination of healed tissue specimen further signify the role of the nanomedicine-based approach to improve the biopharmaceutical attributes of curcumin. |
format | Online Article Text |
id | pubmed-8628781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86287812021-11-30 Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation Algahtani, Mohammed S. Ahmad, Mohammad Zaki Nourein, Ihab Hamed Albarqi, Hassan A. Alyami, Hamad S. Alyami, Mohammad H. Alqahtani, Abdulsalam A. Alasiri, Ali Algahtani, Thamer S. Mohammed, Abdul Aleem Ahmad, Javed Gels Article Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wound healing application. Further, curcumin (a natural bioactive) was selected as a therapeutic agent to incorporate into the hydrogel system to design and develop nanogel pharmaceutical products for wound healing. Although, curcumin possesses remarkable anti-inflammatory, antioxidant, and anti-infective activity along with hastening the healing process by acting over the different stages of the wound healing process, but its poor biopharmaceutical (low aqueous solubility and skin penetrability) attributes hamper their therapeutic efficacy for skin applications. The current investigation aimed to develop the curcumin-loaded nanogel system and evaluated to check the improvement in the therapeutic efficacy of curcumin through a nanomedicine-based approach for wound healing activity in Wistar rats. The curcumin was enclosed inside the nanoemulsion system prepared through a high-energy ultrasonic emulsification technique at a minimum concentration of surfactant required to nanoemulsify the curcumin-loaded oil system (Labrafac PG) having droplet size 56.25 ± 0.69 nm with polydispersity index 0.05 ± 0.01 and negatively surface charge with zeta potential −20.26 ± 0.65 mV. It was observed that the impact of Smix (surfactant/co-surfactant mixture) ratio on droplet size of generated nanoemulsion is more pronounced at lower Smix concentration (25%) compared to the higher Smix concentration (30%). The optimized curcumin-loaded nanoemulsion was incorporated into a 0.5% Carbopol(®) 940 hydrogel system for topical application. The developed curcumin nanoemulgel exhibited thixotropic rheological behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared to curcumin dispersed in conventional hydrogel system. The in vivo wound healing efficacy study and histological examination of healed tissue specimen further signify the role of the nanomedicine-based approach to improve the biopharmaceutical attributes of curcumin. MDPI 2021-11-14 /pmc/articles/PMC8628781/ /pubmed/34842698 http://dx.doi.org/10.3390/gels7040213 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Algahtani, Mohammed S. Ahmad, Mohammad Zaki Nourein, Ihab Hamed Albarqi, Hassan A. Alyami, Hamad S. Alyami, Mohammad H. Alqahtani, Abdulsalam A. Alasiri, Ali Algahtani, Thamer S. Mohammed, Abdul Aleem Ahmad, Javed Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title | Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title_full | Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title_fullStr | Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title_full_unstemmed | Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title_short | Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and In Vivo Evaluation |
title_sort | preparation and characterization of curcumin nanoemulgel utilizing ultrasonication technique for wound healing: in vitro, ex vivo, and in vivo evaluation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628781/ https://www.ncbi.nlm.nih.gov/pubmed/34842698 http://dx.doi.org/10.3390/gels7040213 |
work_keys_str_mv | AT algahtanimohammeds preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT ahmadmohammadzaki preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT noureinihabhamed preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT albarqihassana preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT alyamihamads preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT alyamimohammadh preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT alqahtaniabdulsalama preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT alasiriali preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT algahtanithamers preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT mohammedabdulaleem preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation AT ahmadjaved preparationandcharacterizationofcurcuminnanoemulgelutilizingultrasonicationtechniqueforwoundhealinginvitroexvivoandinvivoevaluation |