Cargando…
GI-SleepNet: A Highly Versatile Image-Based Sleep Classification Using a Deep Learning Algorithm
Sleep-stage classification is essential for sleep research. Various automatic judgment programs, including deep learning algorithms using artificial intelligence (AI), have been developed, but have limitations with regard to data format compatibility, human interpretability, cost, and technical requ...
Autores principales: | Gao, Tianxiang, Li, Jiayi, Watanabe, Yuji, Hung, Chijung, Yamanaka, Akihiro, Horie, Kazumasa, Yanagisawa, Masashi, Ohsawa, Masahiro, Kume, Kazuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628800/ https://www.ncbi.nlm.nih.gov/pubmed/34842647 http://dx.doi.org/10.3390/clockssleep3040041 |
Ejemplares similares
-
MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks
por: Yamabe, Masato, et al.
Publicado: (2019) -
Micro SleepNet: efficient deep learning model for mobile terminal real-time sleep staging
por: Liu, Guisong, et al.
Publicado: (2023) -
A phosphorylation-deficient mutant of Sik3, a homolog of Sleepy, alters circadian sleep regulation by PDF neurons in Drosophila
por: Kobayashi, Riho, et al.
Publicado: (2023) -
Automated sleep stage scoring employing a reasoning mechanism and evaluation of its explainability
por: Horie, Kazumasa, et al.
Publicado: (2022) -
Ethanol-induced enhancement of inhibitory synaptic
transmission in the rat spinal substantia gelatinosa
por: Yamada, Akihiro, et al.
Publicado: (2018)