Cargando…
Unsupervised clustering analysis of SARS-Cov-2 population structure reveals six major subtypes at early stage across the world
Identifying the population structure of the newly emerged coronavirus SARS-CoV-2 has significant potential to inform public health management and diagnosis. As SARS-CoV-2 sequencing data accrued, grouping them into clusters is important for organizing the landscape of the population structure of the...
Autores principales: | Li, Yawei, Liu, Qingyun, Zeng, Zexian, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629198/ https://www.ncbi.nlm.nih.gov/pubmed/34845455 http://dx.doi.org/10.1101/2020.09.04.283358 |
Ejemplares similares
-
Using an Unsupervised Clustering Model to Detect the Early Spread of SARS-CoV-2 Worldwide
por: Li, Yawei, et al.
Publicado: (2022) -
The global population of SARS-CoV-2 is composed of six major subtypes
por: Morais, Ivair José, et al.
Publicado: (2020) -
Probing Real Sensory Worlds of Receivers with Unsupervised Clustering
por: Pfeiffer, Michael, et al.
Publicado: (2012) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
Unsupervised Hierarchical Clustering Identifies Immune Gene Subtypes in Gastric Cancer
por: Cao, Jing, et al.
Publicado: (2021)