Cargando…
Encoder-decoder models for chest X-ray report generation perform no better than unconditioned baselines
High quality radiology reporting of chest X-ray images is of core importance for high-quality patient diagnosis and care. Automatically generated reports can assist radiologists by reducing their workload and even may prevent errors. Machine Learning (ML) models for this task take an X-ray image as...
Autores principales: | Babar, Zaheer, van Laarhoven, Twan, Marchiori, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629217/ https://www.ncbi.nlm.nih.gov/pubmed/34843509 http://dx.doi.org/10.1371/journal.pone.0259639 |
Ejemplares similares
-
A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
por: Ullah, Ihsan, et al.
Publicado: (2023) -
Author Correction: A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
por: Ullah, Ihsan, et al.
Publicado: (2023) -
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder–Decoder Segmentation Networks
por: Lee, Chien-Cheng, et al.
Publicado: (2022) -
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023) -
Abdominal obesity phenotype is associated with COVID-19 chest X-ray severity score better than BMI-based obesity
por: Malavazos, Alexis Elias, et al.
Publicado: (2021)