Cargando…

Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients

BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using rea...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrade, Hugo Boechat, Ferreira da Silva, Ivan Rocha, Sim, Justin Lee, Mello-Neto, José Henrique, Theodoro, Pedro Henrique Nascimento, Torres da Silva, Mayara Secco, Varela, Margareth Catoia, Ramos, Grazielle Viana, Ramos da Silva, Aline, Bozza, Fernando Augusto, Soares, Jesus, Belay, Ermias D., Sejvar, James J., Cerbino-Neto, José, Japiassú, André Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629274/
https://www.ncbi.nlm.nih.gov/pubmed/34843551
http://dx.doi.org/10.1371/journal.pone.0260551
_version_ 1784607171084812288
author Andrade, Hugo Boechat
Ferreira da Silva, Ivan Rocha
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Torres da Silva, Mayara Secco
Varela, Margareth Catoia
Ramos, Grazielle Viana
Ramos da Silva, Aline
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
author_facet Andrade, Hugo Boechat
Ferreira da Silva, Ivan Rocha
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Torres da Silva, Mayara Secco
Varela, Margareth Catoia
Ramos, Grazielle Viana
Ramos da Silva, Aline
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
author_sort Andrade, Hugo Boechat
collection PubMed
description BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. METHODS: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors—age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm(3), fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure—were included in the development diagnostic model (P<0.05). RESULTS: The pool data’s model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864–0.921, P<0.0001). CONCLUSIONS: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.
format Online
Article
Text
id pubmed-8629274
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-86292742021-11-30 Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients Andrade, Hugo Boechat Ferreira da Silva, Ivan Rocha Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Torres da Silva, Mayara Secco Varela, Margareth Catoia Ramos, Grazielle Viana Ramos da Silva, Aline Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel PLoS One Research Article BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. METHODS: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors—age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm(3), fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure—were included in the development diagnostic model (P<0.05). RESULTS: The pool data’s model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864–0.921, P<0.0001). CONCLUSIONS: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity. Public Library of Science 2021-11-29 /pmc/articles/PMC8629274/ /pubmed/34843551 http://dx.doi.org/10.1371/journal.pone.0260551 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Andrade, Hugo Boechat
Ferreira da Silva, Ivan Rocha
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Torres da Silva, Mayara Secco
Varela, Margareth Catoia
Ramos, Grazielle Viana
Ramos da Silva, Aline
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_full Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_fullStr Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_full_unstemmed Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_short Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_sort central nervous system infection in the intensive care unit: development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629274/
https://www.ncbi.nlm.nih.gov/pubmed/34843551
http://dx.doi.org/10.1371/journal.pone.0260551
work_keys_str_mv AT andradehugoboechat centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT ferreiradasilvaivanrocha centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT simjustinlee centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT mellonetojosehenrique centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT theodoropedrohenriquenascimento centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT torresdasilvamayarasecco centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT varelamargarethcatoia centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT ramosgrazielleviana centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT ramosdasilvaaline centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT bozzafernandoaugusto centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT soaresjesus centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT belayermiasd centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT sejvarjamesj centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT cerbinonetojose centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients
AT japiassuandremiguel centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients