Cargando…
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using rea...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629274/ https://www.ncbi.nlm.nih.gov/pubmed/34843551 http://dx.doi.org/10.1371/journal.pone.0260551 |
_version_ | 1784607171084812288 |
---|---|
author | Andrade, Hugo Boechat Ferreira da Silva, Ivan Rocha Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Torres da Silva, Mayara Secco Varela, Margareth Catoia Ramos, Grazielle Viana Ramos da Silva, Aline Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel |
author_facet | Andrade, Hugo Boechat Ferreira da Silva, Ivan Rocha Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Torres da Silva, Mayara Secco Varela, Margareth Catoia Ramos, Grazielle Viana Ramos da Silva, Aline Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel |
author_sort | Andrade, Hugo Boechat |
collection | PubMed |
description | BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. METHODS: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors—age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm(3), fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure—were included in the development diagnostic model (P<0.05). RESULTS: The pool data’s model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864–0.921, P<0.0001). CONCLUSIONS: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity. |
format | Online Article Text |
id | pubmed-8629274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86292742021-11-30 Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients Andrade, Hugo Boechat Ferreira da Silva, Ivan Rocha Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Torres da Silva, Mayara Secco Varela, Margareth Catoia Ramos, Grazielle Viana Ramos da Silva, Aline Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel PLoS One Research Article BACKGROUND: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. METHODS: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors—age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm(3), fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure—were included in the development diagnostic model (P<0.05). RESULTS: The pool data’s model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864–0.921, P<0.0001). CONCLUSIONS: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity. Public Library of Science 2021-11-29 /pmc/articles/PMC8629274/ /pubmed/34843551 http://dx.doi.org/10.1371/journal.pone.0260551 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Andrade, Hugo Boechat Ferreira da Silva, Ivan Rocha Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Torres da Silva, Mayara Secco Varela, Margareth Catoia Ramos, Grazielle Viana Ramos da Silva, Aline Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title | Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_full | Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_fullStr | Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_full_unstemmed | Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_short | Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_sort | central nervous system infection in the intensive care unit: development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629274/ https://www.ncbi.nlm.nih.gov/pubmed/34843551 http://dx.doi.org/10.1371/journal.pone.0260551 |
work_keys_str_mv | AT andradehugoboechat centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT ferreiradasilvaivanrocha centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT simjustinlee centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT mellonetojosehenrique centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT theodoropedrohenriquenascimento centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT torresdasilvamayarasecco centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT varelamargarethcatoia centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT ramosgrazielleviana centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT ramosdasilvaaline centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT bozzafernandoaugusto centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT soaresjesus centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT belayermiasd centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT sejvarjamesj centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT cerbinonetojose centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients AT japiassuandremiguel centralnervoussysteminfectionintheintensivecareunitdevelopmentandvalidationofamultiparameterdiagnosticpredictiontooltoidentifysuspectedpatients |