Cargando…
Determination of the quantitative content of chlorophylls in leaves by reflection spectra using the random forest algorithm
Determining the quantitative content of chlorophylls in plant leaves by their reflection spectra is an important task both in monitoring the state of natural and industrial phytocenoses, and in laboratory studies of normal and pathological processes during plant growth. The use of machine learning m...
Autores principales: | Urbanovich, E.A., Afonnikov, D.A., Nikolaev, >S.V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629362/ https://www.ncbi.nlm.nih.gov/pubmed/34901704 http://dx.doi.org/10.18699/VJ21.008 |
Ejemplares similares
-
Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms
por: Yamashita, Hiroto, et al.
Publicado: (2020) -
Optical Method for Estimating the Chlorophyll Contents in Plant Leaves
por: Pérez-Patricio, Madaín, et al.
Publicado: (2018) -
Reflectance Variation within the In-Chlorophyll Centre Waveband for Robust Retrieval of Leaf Chlorophyll Content
por: Zhang, Jing, et al.
Publicado: (2014) -
Copper Content Inversion of Copper Ore Based on Reflectance Spectra and the VTELM Algorithm
por: Fu, Yanhua, et al.
Publicado: (2020) -
Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms
por: Tuerxun, Nigela, et al.
Publicado: (2023)